Micro-Epsilon UK Ltd. - PRODUCT NEWS

The world's first laser triangulation sensor to use blue laser technology

Micro-Epsilon has launched a world first in laser triangulation sensor technology with its innovative Blue Laser Sensor. The new sensor offers significant benefits for users who need to measure the position or displacement of red-hot glowing metals and also translucent targets.

Micro-Epsilon's optoNCDT 1700BL series of Blue Laser Sensors operate on the laser triangulation measuring principle and use blue (violet) laser technology. The sensors are ideal for measurements on hot, glowing metals, particularly in hot steel processing applications, as well as for measuring organic materials such as skin, foodstuffs, plastics, veneers and wood.

The wavelength of the blue laser offers significant technical advantages.

With red, glowing objects, a conventional red laser has a high signal interference from the object surface, because it emits the same or very near wavelengths of light as the red laser. However, the blue laser works at a wavelength of 405nm, which is far from the red part of the visible spectrum. This means it is easier to filter this type of emitted light from the object, which ensures very stable signals. The blue laser therefore measures extremely well on both glowing metals and ceramics. This is a unique advantage, for example, when it comes to measuring the wear or deformation of automotive brake discs under load.

In addition, there are significant benefits to be seen when measuring against translucent objects such as organic materials, paper, some plastics and wood veneers. Unlike a red laser, the blue laser light does not penetrate into the measuring object because it has a lower intensity laser spot and therefore offers more stable, precise measurements on targets that conventional red laser sensors have difficulty measuring.

Micro-Epsilon's Blue Laser Sensors are equipped with new high-end optical lenses, a new intelligent laser control and evaluation algorithms. The sensors are suitable for red glowing metals up to 1,600 deg C, and for silicon up to 1,150 deg C.

The optoNCDT 1700BL operates using the laser triangulation principle. A laser diode projects a visible point of light onto the surface of the target object. The light reflected from this point is then projected onto a CCD array. If the target changes position with respect to the sensor, the movement of the reflected light is projected on the CCD array and analysed to output the exact position of the target. The measurements are processed digitally in the integral controller. The data is output via analogue (I/U) and digital interface RS422 or USB.

Chris Jones, Managing Director at Micro-Epsilon UK Ltd comments: "As well as being the world's first laser triangulation sensor to use blue laser technology, the optoNCDT 1700BL also has an integral controller, which automatically compensates in real time for difficult-to-measure surfaces. The sensor's unique real-time surface compensation [RTSC] feature and patented high-speed evaluation algorithms dramatically reduce signal noise. When customers need to measure against hot glowing metals, they can adjust the laser on time of the sensor to give them the optimum exposure time on the CCD for that particular surface. This, in turn, provides a higher accuracy measurement due to lower noise level on the output signal."

Most suppliers can only offer sensors with a fixed measurement rate, which is selected by the manufacturer as a 'best case fits all'. This means that for most surfaces, the user then has to rely on averaging the output data to reduce the noise level or error on the output, which gives lower accuracy. However, using Micro-Epsilon's software algorithms, the measurement rate on the sensor can be slowed down for difficult surfaces. This means it can compensate in real time, and the exposure time of the laser light on the CCD can be optimised for the surface of the object to be measured, resulting in higher accuracy measurements.

The optoNCDT 1700BL series includes six sensor models with measuring ranges from 20mm up to 1,000mm. The measuring rate of the sensor can be adjusted up to 2.5 kHz and can be used as a freely programmable limit switch. Maximum linearity is 16mm. Maximum resolution is 1.5mm at 2.5 kHz (without any averaging). High flexibility cables can be provided for use with robots. A calibration certificate is included as standard.

Micro-Epsilon (www.micro-epsilon.co.uk) is a major global manufacturer of sensors, headquartered in Germany. The company’s range of displacement sensors measure everything from to distance, position, vibration, dimensions and thickness, using both contact and non-contact measurement techniques. These techniques include 1D, 2D and even 3D laser-optical sensors and systems, eddy-current, capacitive, LVDT & inductive, potentiometric and draw-wire principles. Additionally Micro Epsilon has developed its own range of non-contact infrared temperature sensors that can measure virtually any target temperature from -40 to +3,300°C.

With more than 35 years’ experience in the industry, Micro-Epsilon isn’t just a sensor manufacturer. The company is highly innovative and understands the importance of providing complete solutions and support services for its customers. The firm is renowned for its expertise in consulting, development and application of industrial sensors to complex, customer-specific solutions for measurement, inspection and automation. The focus is on selling technical advantage to its customers.

For sales and technical information contact:-

Chris Jones
Micro-Epsilon UK Ltd.
Telephone: +44(0)151 355 6070
Fax: +44(0)151 355 6075

September 2011

Home - Search - Suppliers - Links - New Products - Catalogues - Magazines
Problem Page - Applications - How they work - Tech Tips - Training - Events